B-splines

- B-splines automatically take care of continuity, with exactly one control vertex per curve segment
- Many types of B-splines: degree may be different (linear, quadratic, cubic,...) and they may be uniform or nonuniform
- We will only look closely at uniform B-splines
- With uniform B-splines, continuity is always one degree lower than the degree of each curve piece
- Linear B-splines have C^{0} continuity, cubic have C^{2}, etc

Uniform Cubic B-spline on $[0,1)$

- Four control points are required to define the curve for $0 \leq t<1$ (t is the parameter)
- Not surprising for a cubic curve with 4 degrees of freedom
- The equation looks just like a Bezier curve, but with different basis functions
- Also called blending functions - they describe how to blend the control points to make the curve

$$
\begin{aligned}
x(t) & =\sum_{i=0}^{3} P_{i} B_{i, 4}(t) \\
& =P_{0} \frac{1}{6}\left(1-3 t+3 t^{2}-t^{3}\right)+P_{1} \frac{1}{6}\left(4-6 t^{2}+3 t^{3}\right)+P_{2} \frac{1}{6}\left(1+3 t+3 t^{2}-3 t^{3}\right)+P_{3} \frac{1}{6}\left(t^{3}\right)
\end{aligned}
$$

Basis Functions on $[0,1)$

- Does the curve interpolate its
 endpoints?
- Does it lie inside its convex hull?

$$
\begin{aligned}
x(t) & =P_{0} \frac{1}{6}\left(1-3 t+3 t^{2}-t^{3}\right) \\
& +P \frac{1}{6_{1}}\left(4-6 t^{2}+3 t^{3}\right) \\
& +P_{2} \frac{1}{6}\left(1+3 t+3 t^{2}-3 t^{3}\right) \\
& +P_{3} \frac{1}{6}\left(t^{3}\right)
\end{aligned}
$$

Uniform Cubic B-spline on $[0,1)$

- The blending functions sum to one, and are positive everywhere
- The curve lies inside its convex hull
- The curve does not interpolate its endpoints
- Requires hacks or non-uniform B-splines
- There is also a matrix form for the curve:

$$
x(t)=\frac{1}{6}\left[\begin{array}{llll}
P_{0} & P_{1} & P_{2} & P_{3}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 0 & 4 \\
-3 & 3 & 3 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]
$$

Uniform Cubic B-splines on [0,m)

- Curve:

$$
X(t)=\sum_{k=0}^{n} P_{k} B_{k, d}(t)
$$

- n is the total number of control points
- d is the order of the curves, $2 \leq d \leq n+1, d$ typically 3 or 4
- $B_{k, d}$ are the uniform B -spline blending functions of degree d-1
- P_{k} are the control points
- Each $B_{k, d}$ is only non-zero for a small range of t values, so the curve has local control

Uniform Cubic B-spline Blending Functions

Computing the Curve

The curve can't start until there are 4 basis functions active

Using Uniform B-splines

- At any point t along a piecewise uniform cubic B-spline, there are four non-zero blending functions
- Each of these blending functions is a translation of $B_{0,4}$
- Consider the interval $0 \leq t<1$
- We pick up the 4th section of $B_{0,4}$
- We pick up the 3rd section of $B_{1,4}$
- We pick up the 2nd section of $B_{2,4}$
- We pick up the 1st section of $B_{3,4}$

Demo

Bspline-openexe

Uniform B-spline at Arbitrary t

- The interval from an integer parameter value i to $i+1$ is essentially the same as the interval from 0 to 1
- The parameter value is offset by i
- A different set of control points is needed
- To evaluate a uniform cubic B-spline at an arbitrary parameter value t :
- Find the greatest integer less than or equal to $t: i=$ floor (t)
- Evaluate:

$$
X(t)=\sum_{k=0}^{3} P_{i+k} B_{k, 4}(t-i)
$$

- Valid parameter range: $0 \leq t<n-3$, where n is the number of control points

Loops

- To create a loop, use control points from the start of the curve when computing values at the end of the curve:

$$
X(t)=\sum_{k=0}^{3} P_{(i+k) \bmod n} B_{k, 4}(t-i)
$$

- Any parameter value is now valid
- Although for numerical reasons it is sensible to keep it within a small multiple of n

Demo

Bspline closedexe

B-splines and Interpolation, Continuity

- Uniform B-splines do not interpolate control points, unless:
- You repeat a control point three times
- But then all derivatives also vanish $(=0)$ at that point
- To do interpolation with non-zero derivatives you must use non-uniform Bsplines with repeated knots
- To align tangents, use double control vertices
- Then tangent aligns similar to Bezier curve
- Uniform B-splines are automatically C^{2}
- All the blending functions are C^{2}, so sum of blending functions is C^{2}
- Provides an alternate way to define blending functions
- To reduce continuity, must use non-uniform B-splines with repeated knots

Rendering B-splines

- Same basic options as for Bezier curves
- Evaluate at a set of parameter values and join with lines
- Hard to know where to evaluate, and how pts to use
- Use a subdivision rule to break the curve into small pieces, and then join control points
- What is the subdivision rule for B-splines?
- Instead of subdivision, view splitting as refinement:
- Inserting additional control points, and knots, between the existing points
- Useful not just for rendering - also a user interface tool
- Defined for uniform and non-uniform B-splines by the Oslo algorithm

Refining Uniform Cubic Bsplines

- Basic idea: Generate 2n-3 new control points:
- Add a new control point in the middle of each curve segment: $P_{0,1}^{\prime}$, $P_{1,2}^{\prime}, P_{2,3}^{\prime}, \ldots, P_{n-2, n-1}^{\prime}$
- Modify existing control points: $P^{\prime}{ }_{1}, P^{\prime}{ }_{2}, \ldots, P_{n-2}$
- Throw away the first and last control
- Rules: $\quad P_{i, j}^{\prime}=\frac{1}{2}\left(P_{i}+P_{j}\right), \quad P_{i}^{\prime}=\frac{1}{8}\left(P_{i-1}+6 P_{i}+P_{i+1}\right)$
- If the curve is a loop, generate $2 n$ new control points by averaging across the loop
- When drawing, don't draw the control polygon, join the $\boldsymbol{x}(i)$ points

From B-spline to Bezier

- Both B-spline and Bezier curves represent cubic curves, so either can be used to go from one to the other
- Recall, a point on the curve can be represented by a matrix equation:

$$
x(t)=P^{T} M T
$$

- P is the column vector of control points
- M depends on the representation: $M_{B \text {-spline }}$ and $M_{B e z i e r}$
- T is the column vector containing: $t^{3}, t^{2}, t, 1$
- By equating points generated by each representation, we can find a matrix $M_{B \text {-spline-> Bezier }}$ that converts B-spline control points into Bezier control points

B-spline to Bezier Matrix

$$
\begin{aligned}
& M_{B-\text { spline } \rightarrow \text { Beier }}=\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right] \\
& {\left[\begin{array}{l}
P_{0, \text { Bezier }} \\
P_{1, \text { Beier }} \\
P_{2, \text { Bezier }} \\
P_{3, \text { Beier }}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
P_{0, B-\text { spline }} \\
P_{1, B-\text { spline }} \\
P_{2, B-\text { spline }} \\
P_{3, B-\text { spline }}
\end{array}\right]}
\end{aligned}
$$

Rational Curves

- Each point is the ratio of two curves
- Just like homogeneous coordinates:

$$
[x(t), y(t), z(t), w(t)] \rightarrow\left[\frac{x(t)}{w(t)}, \frac{y(t)}{w(t)}, \frac{z(t)}{w(t)}\right]
$$

- NURBS: $x(t), y(t), z(t)$ and $w(t)$ are non-uniform B-splines
- Advantages:
- Perspective invariant, so can be evaluated in screen space
- Can perfectly represent conic sections: circles, ellipses, etc
- Piecewise cubic curves cannot do this

B-Spline Surfaces

- Defined just like Bezier surfaces:

$$
X(s, t)=\sum_{j=0}^{m} \sum_{k=0}^{n} P_{j, k} B_{j, d}(s) B_{k, d}(t)
$$

- Continuity is automatically obtained everywhere
- BUT, the control points must be in a rectangular grid

OK

Non-Uniform B-Splines

- Uniform B-splines are a special case of B-splines
- Each blending function is the same
- A blending functions starts at $t=-3, t=-2, t=-1, \ldots$
- Each blending function is non-zero for 4 units of the parameter
- Non-uniform B-splines can have blending functions starting and stopping anywhere, and the blending functions are not all the same

B-Spline Knot Vectors

- Knots: Define a sequence of parameter values at which the blending functions will be switched on and off
- Knot values are increasing, and there are $n+d+1$ of them, forming a knot vector: $\left(t_{0}, t_{l}, \ldots, t_{n+d}\right)$ with $t_{0} \leq t_{1} \leq \ldots \leq t_{n+d}$
- Curve only defined for parameter values between t_{d-1} and t_{n+1}
- These parameter values correspond to the places where the pieces of the curve meet
- There is one control point for each value in the knot vector
- The blending functions are recursively defined in terms of the knots and the curve degree

B-Spline Blending Functions

$$
\begin{array}{r}
B_{k, 1}(t)=\left\{\begin{array}{rr}
1 & t_{k} \leq t \leq t_{k+1} \\
0 & \text { otherwise }
\end{array} \quad B_{k, d}(t)=\left(\frac{t-t_{k}}{t_{k+d-1}-t_{k}}\right) B_{k, d-1}(t)+\right. \\
\left(\frac{t_{k+d}-t}{t_{k+d}-t_{k+1}}\right) B_{k+1, d-1}(t)
\end{array}
$$

- The recurrence relation starts with the 1st order B-splines, just boxes, and builds up successively higher orders
- This algorithm is the Cox - de Boor algorithm
- Carl de Boor was a professor here

Uniform Cubic B-splines

- Uniform cubic B-splines arise when the knot vector is of the form (-3,-2,-1,0,1,...,n+1)
- Each blending function is non-zero over a parameter interval of length 4
- All of the blending functions are translations of each other
- Each is shifted one unit across from the previous one
- $B_{k, d}(t)=B_{k+1, d}(t+1)$
- The blending functions are the result of convolving a box with itself d times, although we will not use this fact

$B_{k, l}$

B 0,1

B2,1

B1,1

t

B3,1

$B_{k, 2}$

B 0,2

B 2,2

$$
B_{0,2}(t)= \begin{cases}t+3 & -3 \leq t<-2 \\ -1-t & -2 \leq t<-1\end{cases}
$$

$B_{k, 3}$

B 0,3

$$
B_{0,3}(t)=\frac{1}{2} \begin{cases}(t+3)^{2} & -3 \leq t<-2 \\ -2 t^{2}-6 t-3 & -2 \leq t<-1 \\ t^{2} & -1 \leq t<0\end{cases}
$$

$B_{0,4}$

B 0,4

$B_{0,4}$

$$
B_{0,4}(t)=\frac{1}{6}\left\{\begin{array}{cc}
(t+3)^{3} & -3 \leq t<-2 \\
-3 t^{3}-15 t^{2}-21 t-5 & -2 \leq t<-1 \\
3 t^{3}+3 t^{2}-3 t+1 & -1 \leq t<0 \\
(1-t)^{3} & 0 \leq t<1
\end{array}\right.
$$

Note that the functions given on slides 4 and 5 are translates of this function obtained by using $(t-1),(t-2)$ and $(t-3)$ instead of just t, and then selecting only a sub-range of t values for each function

Interpolation and Continuity

- The knot vector gives a user control over interpolation and continuity
- If the first knot is repeated three times, the curve will interpolate the control point for that knot
- Repeated knot example: $(-3,-3,-3,-2,-1,0, \ldots)$
- If a knot is repeated, so is the corresponding control point
- If an interior knot is repeated, continuity at that point goes down by 1
- Interior points can be interpolated by repeating interior knots
- A deep investigation of B-splines is beyond the scope of this class

How to Choose a Spline

- Hermite curves are good for single segments where you know the parametric derivative or want easy control of it
- Bezier curves are good for single segments or patches where a user controls the points
- B-splines are good for large continuous curves and surfaces
- NURBS are the most general, and are good when that generality is useful, or when conic sections must be accurately represented (CAD)

